Design of Seeking Control Based on Two-Degree-of-Freedom Controller Using Frequency Shaped Final-State Control

نویسندگان

  • Hyun Jae Kang
  • Choong Woo Lee
  • Ho-Seong Lee
چکیده

In this paper, we introduce a new seeking control method based on the frequency shaped finalstate control (FFSC). The seeking control method is a two-degree-of-freedom control, which is the plantbased feedforward control. The feedforward control input is designed through zero-order-hold using FFSC which imposes the constraints on control input magnitude and its frequency components to minimize residual vibrations. The reference generation is made through a feedforward path controller which is in the form of the zero-phase error tracking controller (ZPETC) of the nominal plant. The reference prefilter is designed to compensate the delay in the control system via the ZPETC. Mode switching control (MSC) is employed to enhance tracking performance after settling. An add-on type disturbance observer that is in the form of finite impulse response is used with the feedback controller. From the simulation results, the proposed method shows the improvement to the settling and disturbance rejection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of Discrete Time Observer Based Backstepping Controller for a 2DOF Servomechanism

The two degrees of freedom servomechanism has many applications, including in gimbaled seekers. These mechanisms require closed-loop control to perform properly. In this paper, an observer-based multi-input-multi-output hybrid controller is designed for a two-degree-of-freedom servomechanism. Since in the model presented in this paper, disturbances on the mechanism are considered, so an extende...

متن کامل

Adaptive Control of a Spin-Stabilized Spacecraft Using two Reaction Wheels and a 1DoF Gimbaled-Thruster

In impulsive orbital maneuvers, a large disturbance torque is generated by the thrust vector misalignment from the center of mass (C.M). The purpose of this paper is to reject the mentioned disturbance and stabilize the spacecraft attitude, based on the combination of a one degree of freedom (1DoF) gimbaled-thruster, two reaction wheels (RWs) and spin-stabilization. In this paper, the disturban...

متن کامل

Quaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques

In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...

متن کامل

Automatic Landing of Small Helicopters on 4 DOF Moving Platforms

In this research, an automatic control system is designed for landing of a small helicopter on a 4 DOF moving platform. The platform has three translational and one directional degree of freedom. The controller design approach is based on development of helicopter nonlinear dynamic model into the SDC (State Dependent Coefficient) form and real time solving of state dependent Riccati equation (S...

متن کامل

Designing a new robust control for virtual inertia control in the microgrid with regard to virtual damping

Background and Objectives: Virtual inertia control, as a component of a virtual synchronous generator, is used for the implementation of synchronous generator behaviour in microgrids. In microgrids that include high-capacity distributed generation resources, in addition to virtual inertia, virtual damping can also lead to improvement of frequency stability of the microgrid. The purpose of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008